Towards a Video Annotation System using Face Recognition

نویسندگان

  • Lucas Lindström
  • Fredrik Georgsson
چکیده

A face recognition software framework was developed to lay the foundation for a future video annotation system. The framework provides a unified and extensible interface to multiple existing implementations of face detection and recognition algorithms from OpenCV and Wawo SDK. The framework supports face detection with cascade classification using Haar-like features, and face recognition with Eigenfaces, Fisherfaces, local binary pattern histograms, the Wawo algorithm and an ensemble method combining the output of the four algorithms. An extension to the cascade face detector was developed that covers yaw rotations. CAMSHIFT object tracking was combined with an arbitrary face recognition algorithm to enhance face recognition in video. The algorithms in the framework and the extensions were evaluated on several different test databases with different properties in terms of illumination, pose, obstacles, background clutter and imaging conditions. The results of the evaluation show that the algorithmic extensions provide improved performance over the basic algorithms under certain conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Video-based face recognition in color space by graph-based discriminant analysis

Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...

متن کامل

From Recognition in Brain to Recognition in Perceptual Vision Systems . Case Study : Face in Video . Example : Identifying Computer Users with Low - Resolution Webcams

This presentation summarizes the effort of our group in designing a non Von-Neumann, biologically motivated approach to video processing and recognition. The need for such an approach is seen from the very fact that, while for humans recognition in video is easy, most recognition approaches developed to date still perform very poorly when applied to video data. Instead of focusing the effort on...

متن کامل

Face and Gender Classification in Crowd Video

Research in face and gender recognition under constrained environment has achieved an acceptable level of performance. There have been advancements in face and gender recognition in unconstrained environment, however, there is significant scope of improvement in surveillance domain. Face and gender recognition in such a setting poses a set of challenges including unreliable face detection, mult...

متن کامل

Automatic Video Tagging System for a Distributed Framework

Video Tagging finds applications in many fields and is fast gaining its importance especially in the context of social networking which is a distributed framework with clients having non-uniform processing capabilities. Through this study we propose a scheme for automatic video tagging, its systematic representation and a proposal for a universal markup language for information exchange between...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014